Hydrolysis of Thymidine Boranomonophosphate and Stepwise Deuterium Substitution of the Borane Hydrogens. ³¹P and ¹¹B NMR Studies[†]

Hong Li,[‡] Charles Hardin,[§] and Barbara Ramsay Shaw*,[‡]

Contribution from the Department of Chemistry, Duke University, Durham, North Carolina 27708, and Department of Biochemistry, North Carolina State University, Raleigh, North Carolina 27695

Received November 30, 1995[⊗]

Abstract: The α -*P*-boranophosphate nucleosides comprise a new class of modified nucleotides that may find use as therapeutic and DNA diagnostic agents. Hydrolysis of thymidine 5'-boranomonophosphate, d(p^BT), has been studied in H₂O and D₂O using ¹H, ³¹P, and ¹¹B NMR spectroscopies. Although d(p^BT) is quite stable at 25 °C, it hydrolyzes slowly at higher temperatures. At 50 or 60 °C, d(p^BT) hydrolyzes first into thymidine (dT) and boranophosphate (O₃P-BH₃³⁻), followed by subsequent hydrolysis of the O₃P-BH₃³⁻ to produce phosphonate and boric acid. A three-step deuterium substitution of the borane hydrogens in O₃P-BH₃³⁻ was detected in D₂O by the presence of a ³¹P isotope shift. The ³¹P resonances shifted downfield by 0.14 ppm upon substitution of each of three ¹H atoms by ²H. Exchange of the borane hydrogens with D₂O occurs as sequential processes superimposed upon hydrolysis of O₃P-BH₃³⁻. The hydrolysis and deuteration steps were characterized in terms of pseudo-first-order rate constants. Hydrolysis of O₃P-BH₃³⁻ is an order of magnitude slower than deuterium substitution.

Introduction

A series of α -*P*-boranomono- (1) or triphosphate (2) nucleosides designed for use as potential therapeutic and DNA diagnostic agents have been synthesized.¹⁻³ These compounds

are distinctive in that one of the nonbridging oxygens in the phosphate diester is replaced by a $-BH_3$ borane moiety. Nucleoside 5'- α -*P*-boranotriphosphates **2** can substitute for normal dNTP and be successfully incorporated into DNA by DNA polymerase,^{2,4,5} yet once in DNA, the boranophosphate linkage is more resistant to *exo* and *endo* nucleases than normal phosphate diesters.^{3,6-9a}

Scheme 1. Phosphate Ester Hydrolysis Reaction of the $d(p^BT)$ Nucleotide in H₂O

The hydrolytic stability of thymidine 5'-boranomonophosphate, $d(p^{B}T)$, has been studied in solution under various pH and temperature conditions using reverse-phase HPLC.⁹ The HPLC studies indicated that $d(p^{B}T)$ undergoes slow hydrolysis in aqueous solution to produce thymidine (dT) (Scheme 1) with a rate constant of 10^{-5} s⁻¹ at pH 7.4, 37 °C, analogous to the hydrolysis pathway of unmodified thymidine 5'-monophosphate, $d(pT)^{9}$. Notably, hydrolysis cleaves the P–O–sugar linkage and not the P–B bond⁹ (see Scheme 1).

Although HPLC methods were used to detect dT as one of the products, conventional HPLC methods cannot detect the other hydrolysis product, which is presumably boranophosphate $(O_3P-BH_3^{3-})$,¹⁰ because this fragment does not absorb in the accessible UV range. Questions arise as to (a) whether $O_3P BH_3^{3-}$ indeed forms as a direct product of $d(p^BT)$ hydrolysis, (b) whether $O_3P-BH_3^{3-}$ undergoes further hydrolysis, and if

^{*} Author to whom correspondence should be addressed.

[†] Abbreviations: dT; thymidine; d(pT), thymidine 5'-monophosphate; d($p^{B}T$), thymidine 5'-boranomonophosphate; d($Tp^{B}T$), dithymidine boranomonophosphate; EDTA, ethylenediaminetetraacetic acid; Et₂OBF₃, diethyl ether-boron trifluoride; HPLC, high-performance liquid chromatography; k_1 , observed pseudo-first-order rate constant; NMR, nuclear magnetic resonance spectroscopy; ppm, parts per million; γ , magnetogyric ratio; TSP, 3-(trimethylsilyl)propionate-2,2,3,3-d₄ sodium salt.

[‡] Duke University.

[§] North Carolina State University.

[®] Abstract published in Advance ACS Abstracts, June 15, 1996.

⁽¹⁾ Sood, A.; Shaw, B. R.; Spielvogel, B. F. J. Am. Chem. Soc. 1990, 112, 9000-9001.

⁽²⁾ Tomasz, J.; Shaw, B. R.; Porter, K.; Spielvogel, F.; Sood, A. Angew. Chem., Int. Ed. Engl. 1992, 31, 1373–1375.

⁽³⁾ Shaw, B. R.; Madison, J.; Sood, A.; Spielvogel, B. F. *Methods Mol. Biol.* **1993**, 20, 225–243.

⁽⁴⁾ Porter, K.; Ealey, K.; Briley, J. D.; Huang, F.; Shaw, B. R. *Genome Sequencing and Analysis Conference VI*, Hilton Head, SC; Mary Ann Liebert, Inc.: New York, 1994; p 43.

⁽⁵⁾ Li, H.; Porter, K.; Huang, F.; Shaw, B. R. Nucleic Acids Res. 1995, 21, 4495-4501.

^{(6) (}a) Porter, K.; Briley, J. D.; Tomasz, J.; Sood, A.; Spielvogel, B. F.; Shaw, B. R. *Genome Sequencing and Analysis Conference V*, Hilton Head, SC; Mary Ann Liebert, Inc.: New York, 1993; p 55. (b) Porter, K.; Briley, J. D.; Shaw, B. R. *Genome Sequencing and Analysis Conference VI*, Hilton Head, SC; Mary Ann Liebert, Inc.: New York, 1994; p 43.

⁽⁷⁾ Ramaswamy, M.; Shaw, B. R. Manuscript in preparation.
(8) Huang, F.; Sood, A.; Spielvogel, B. F.; Shaw, B. R. J. Biomol. Struct. Dyn. 1993, 10, a078.

^{(9) (}a) Huang, F. Ph.D. Thesis; Duke University, Durham, NC, 1994. (b) Huang, F.; Sood, A.; Spielvogel, B. F.; Shaw, B. R. *Eighth International Meeting on Boron Chemistry*; The University of Tennessee: Knoxville, TN, 1993; p 114. (c) Huang, F.; Shaw, B. R. Manuscript in preparation.

so, what the identities of the hydrolysis products are, and (c) whether stepwise hydrolysis and/or exchange of borane hydrogens with solvent occurs. These questions are important for assessing the toxicity of boranophosphate-containing nucleotides as therapeutic agents, as well as for enhancing our understanding of the chemistry of boron-containing phosphorus compounds. In order to address the fate of these B–P bond-containing compounds, we have employed ¹H, ¹¹B, and ³¹P NMR to study the $d(p^{B}T)$ hydrolysis. We describe new aspects of $d(p^{B}T)$ hydrolysis, identify $O_{3}P$ –BH₃^{3–} as the main hydrolysis product, and document solvent exchange of the borane hydrogens.

Materials and Methods

Sample Preparation. Lyophilized $d(p^BT)$ powder in ammonium form was graciously provided by Dr. J. Tomasz.² NMR samples, which typically contained about 85 mM $d(p^BT)$, were made by dissolving the lyophilized $d(p^BT)$ powder directly into H_2O or D_2O . The concentration of $d(p^BT)$ was estimated from the UV absorbance at 260 nm using the molar extinction coefficient of unmodified thymidine monophosphate d(pT).¹¹ All samples were analyzed in 5 mm NMR tubes (Wilmad).

Since all samples were prepared in nonbuffered H_2O or D_2O solvents, a gradual decrease in pH was observed as hydrolysis proceeded. Initially, the pH was about 6; by the final stages of hydrolysis it had decreased to about 5. This pH change may affect the rate constants^{12a} and chemical shifts^{12b} to a limited extent.

Hydrolysis and Solvent Exchange Reactions. Hydrolysis of $d(p^BT)$ was studied in H₂O and D₂O by examining ¹H, ³¹P, and ¹¹B NMR spectra at different incubation times. Hydrolysis and deuterium substitution rates were determined by measuring changes in the heights of the respective NMR peaks with time. Intensity changes measured as a function of time were fit to a pseudo-first-order reaction model. In general, the correlation coefficients (R^2) were better than 0.92. The beginning of each time-dependent acquisition is referred to as t = 0. True zero times were not available in this kind of experiment due to the elapsed time required for sample preparation and proper setup. However, calculation of a pseudo-first-order rate constant from reactant concentration changes does not require knowledge of the exact reaction initial time.

NMR Experiments. All ¹H, ³¹P, and ¹¹B NMR experiments were performed on a Varian Unity-500 NMR spectrometer at the Duke NMR Center. Spectra were acquired in the X-nucleus channel of a 5 mm reverse-detect probe which was tuned for either ³¹P or ¹¹B. D₂O was used as the lock signal. For experiments performed in H₂O, the D₂O was enclosed in a special NMR insert tube (Wilmad) to avoid unwanted deuterium exchange between the sample and solvent. ³¹P and ¹¹B NMR spectra were recorded using enough transients to provide satisfactory

signal-to-noise ratios. NMR spectra were processed and plotted using a Sun SPARC 2 computer with Varian NMR software. NMR peak intensities represent time-averaged values for a given acquisition period, which was much less than the total reaction time. Since the line widths did not change appreciably with time, NMR peak integrals could be determined using signal heights.

³¹P NMR spectra were acquired at 202 MHz using 32k data points and a sweep width of 33 113 Hz. ³¹P chemical shifts were referenced externally to a solution of 85% H₃PO₄. The ³¹P spectra of d(p^BT) and O₃P-BH₃³⁻ are complicated due to direct bonding of phosphorus to the boron atom. Naturally abundant boron consists of 80.4% ¹¹B (spin I = 3/2) and 19.6% ¹⁰B (spin I = 3). When a ³¹P (I = 1/2) atom is bonded to a single ¹¹B, as in the -P-BH₃³⁻ linkage, four equallyspaced and equal-intensity lines (a quartet with a 1-1-1-1 pattern) are expected in the ³¹P spectrum. If a ³¹P is coupled to a ¹⁰B atom, seven equally-spaced and equal-intensity lines (a septet with a 1-1-1-1-1-1-1 pattern) are expected. Thus, a P-B bond-containing sample with naturally abundant boron could be expected to show a complicated ³¹P spectrum. The ³¹P-¹⁰B coupling constant is about one-third that of the ³¹P-¹¹B coupling constant due to the difference in magnetogyric ratios $(\gamma(^{11}B)/\gamma(^{10}B) = 2.99)$.^{13a} The intensity of an individual ³¹P peak coupled to a ¹⁰B is hence about 0.14 times the intensity of a ³¹P peak coupled to a ¹¹B in a naturally abundant boron compound.^{13b} Thus, underlying the quartet due to ³¹P coupling with ¹¹B in the ³¹P spectrum is a septet due to ³¹P coupling with ¹⁰B at similar chemical shifts. Experimentally, the ³¹P spectra usually appear as if the boron effects derive only from ¹¹B scalar coupling.¹⁴ However, the intensities of the two middle peaks are often enhanced relative to the intensities of the two outside peaks. In this study, we consider only the ¹¹B coupling and neglect the ¹⁰B coupling in the ³¹P spectra.

¹H NMR spectra were collected at 499.843 MHz with a sweep width of 5498.3 Hz and 16k data points. ¹H chemical shifts were measured relative to TSP (3-(trimethylsilyl)propionate- $2,2,3,3-d_4$ sodium salt) as internal reference.

 ^{11}B NMR spectra were acquired at 160 MHz using 16k data points and a sweep width of 22 447 Hz. ^{11}B chemical shifts were referenced externally to a solution of diethylether—boron trifluoride, Et₂OBF₃. Although ^{11}B is a quadrupolar nucleus, line-broadening is not severe for the molecules studied. Boron in the glass NMR tube and the NMR probe produce a broad background ^{11}B signal, which did not obstruct our observations.

Results

¹H, ³¹P, and ¹¹B Spectra of $d(p^BT)$. The starting material used for these studies was the mononucleotide thymidine 5'boranomonophosphate, $d(p^BT)$. The 1.5–7 ppm range of the ¹H spectrum (Figure 1A) shows a peak pattern very similar to that of normal thymidine 5'-monophosphate, d(pT),¹⁵ corresponding to the protons on the sugar and base of $d(p^BT)$. An eight-line pattern centered at about 0.33 ppm corresponds to a 1-1-1-1 quartet (Figure 1A,B) from borane hydrogens which couple with ¹¹B and are further split by ³¹P to produce a doublet in each peak of the quartet (Figure 1B). Couplings to both ¹¹B and ³¹P were verified by ¹¹B- and ³¹P-decoupling experiments, respectively (data not shown). The ¹¹B-decoupled spectrum shows only a doublet due to ³¹P coupling with borane hydrogens; the ³¹P-decoupled spectrum shows a 1-1-1-1 pattern due to ¹¹B coupling with borane hydrogens.

The ³¹P NMR spectrum of $d(p^{B}T)$ at 25 °C is a 1-1-1-1 quartet centered at about 85 ppm due to ¹¹B coupling (Figure 1C). Further splitting of the ³¹P resonance by borane hydrogens was not resolved under these conditions.

⁽¹⁰⁾ The actual ionization states of thymidine boranomonophosphate, boranophosphate, phosphonate (or phosphite), and boric acid in solution are both pH- and ionic strength-dependent. For convenience, we show thymidine boranomonophosphate, boranophosphate, and phosphonate in their fully deprotonated forms, and boric acid in its fully protonated form. This probably does not reflect the actual protonation states of these molecules at pH 5-6 (*vide infra*). The state of protonation is not the subject of the present paper.

⁽¹¹⁾ Borer, P. N. Nucleic Acids. In *Handbook of Biochemistry and Molecular Biology*, 3rd ed.; Fasman, G. D., Ed.; CRC Press: Cleveland, OH, 1975; Vol. 1, p 589.

^{(12) (}a) The rate-pH profile of the thymidine boranomonophosphate hydrolysis in ref 9 indicated that the rate constants change by less than 25% over the pH range from 3 to 6.5. (b) Small but observable changes in ³¹P chemical shifts were observed during hydrolysis of $d(p^{BT})$ mononucleotide to dT and hydrolysis of $O_3P-BH_3^{3-}$ in H₂O or D₂O, in addition to intensity changes. The ³¹P chemical shifts of both the reactant $d(p^{BT})$ and product boranophosphate decreased with time (e.g., by -0.15 and -0.11 ppm, respectively, in H₂O at 50 °C in 35 min). During subsequent hydrolysis of boranophosphate, the ³¹P chemical shifts of non-deuterated and partially and fully deuterated species I-IV increased with time in both D₂O and H₂O (e.g., by +0.06 ppm for intermediates II-IV in 3 h at 60 °C), while the ¹¹B chemical shift decreased (e.g., by -0.06 ppm in 9 h at 60 °C). The reason for the small observed ³¹P chemical shift changes is not apparent. These changes could be due to a pH change as a result of hydrolysis, chemical exchange among different species, or an equilibrium isotope effect.

^{(13) (}a) Harris, R. K. Nuclear Magnetic Resonance Spectroscopy: A Physicochemical View; Longman Scientific & Technical, Somerset, NJ, 1986. (b) Eaton, G. R.; Lipscomb, W. N. NMR Studies of Boron Hydrides and Related Compounds; W. A. Benjamin, Inc.: New York, 1969.

⁽¹⁴⁾ Schaeffer, R. Progress in Boron Chemistry; The MacMillan Co.: New York, 1964; Vol. 1.

⁽¹⁵⁾ Wood, D. J.; Hruska, F. E.; Ogilvie, K. K. Can. J. Chem. 1974, 52, 3353–3366.

Figure 1. ¹H, ³¹P, and ¹¹B NMR spectra of $d(p^BT)$ at 25 °C: (A) ¹H spectrum, 512 scans at 10 Hz line-broadening; (B) expanded region from panel A for the $-P-BH_3$ linkage; (C) ³¹P spectrum, 1024 scans at 10 Hz line-broadening; peaks in the 81–83 ppm range are due to the hydrolysis product of $d(p^BT)$; (D) ¹¹B spectrum, 512 scans at 10 Hz line-broadening.

In the ¹¹B NMR spectrum of $d(p^{B}T)$ at 25 °C (Figure 1D), two partially overlapped 1-3-3-1 patterns centered at about -40.1 ppm are seen due to coupling with both the single ³¹P and three equivalent hydrogens in the $-P-BH_3$ linkage. Upon ¹H decoupling of the ¹¹B spectrum, a doublet was observed at this chemical shift (data not shown), confirming the ¹¹B assignments in the $-P-BH_3$ linkage.

Phosphate Ester Hydrolysis of d(p^BT) in H₂O. Hydrolysis of d(p^BT) in H₂O was studied by ¹H, ³¹P, and ¹¹B NMR at higher temperatures in order to accelerate the reaction for suitable NMR observation. When d(p^BT) was incubated at 50 °C and the ¹Hdecoupled ³¹P spectrum was monitored with time, a new 1-1-1-1 quartet (centered at ca. 83.5 ppm) was seen upfield from the quartet of the starting d(p^BT) material (centered at 87.1 ppm) (Figure 2). The intensity of the new upfield quartet increased with time as the intensity of the $d(p^{B}T)$ quartet decreased. This is consistent with previous HPLC experiments, which indicated that the d(p^BT) mononucleotide undergoes slow phosphate ester hydrolysis.⁹ The decomposition products are proposed to be dT and O₃P-BH₃³⁻ as shown in Scheme 1. The upfield quartet centered at 83.5 ppm indicates that the hydrolysis product retains the P-B bond, since the chemical shift is nearly equal to that of the $d(p^BT)$ quartet (only a 3.6 ppm difference) and both peaks had the same splitting pattern.

Additional evidence that hydrolysis proceeds as shown in Scheme 1 comes from an examination of the spectra of the hydrolysis products. The ¹¹B spectrum of $O_3P-BH_3^{3-}$ in H_2O shows a doublet of quartets with 1-3-3-1 patterns (centered at *ca.* 39.3 ppm at 25 °C). (The 25 °C spectrum is not shown,

Figure 2. ¹H-decoupled ³¹P spectra during $d(p^{B}T)$ hydrolysis in H₂O at 50 °C. The downfield quartet centered at *ca.* 87.1 ppm corresponds to $d(p^{B}T)$ resonance; the upfield quartet centered at *ca.* 83.5 ppm is from O₃P-BH₃³⁻ resonance. A total of 52 scans were acquired for each spectrum in about 1.5 min, and a line-broadening of 30 Hz was applied. The exact initial time is not available but refers to the time of the first measurement of the set of data (see the Materials and Methods).

but is similar to the 50 °C spectrum shown in Figure 4). The ¹¹B pattern can be attributed to ¹¹B coupling with a single ³¹P and three equivalent hydrogens, indicating the presence of a $-P-BH_3$ linkage in the hydrolysis product.

Formation of dT, as the other $d(p^BT)$ hydrolysis product, was also detected by following the ¹H NMR spectrum. As expected, the integrals of the sugar and base ¹H reasonances of dT increased with time while those of $d(p^BT)$ decreased (data not shown).

The intensity changes of the ³¹P peaks with time, demonstrated in Figure 2, were fit to a pseudo-first-order exponential decay rate equation with respect to $d(p^{B}T)$ concentration. The calculated hydrolysis rate constant k_1 determined at 50 °C with 21 data points acquired over 30 min is $4 \times 10^{-4} \text{ s}^{-1}$ ($R^2 = 0.98$; data not shown).

Since phosphate ester hydrolysis of d(p^BT) to produce dT and $O_3P-BH_3^{3-}$ (Scheme 1) has been studied under various conditions using quantitative HPLC methods, those results will be reported elsewhere.^{9c} Our emphasis in this work is to describe further reactions of O₃P-BH₃³⁻ in aqueous solution. $O_3P-BH_3^{3-}$ Hydrolysis in H₂O. The same solutions described above, which had undergone nearly complete phosphate ester hydrolysis of d(p^BT) mononucleotide (lacking the 87 ppm quartet in the ³¹P spectrum), were used to investigate further hydrolysis of O₃P-BH₃³⁻. Upon monitoring the ¹Hdecoupled ³¹P spectrum in H₂O at 50 °C, a singlet was seen at ca. 3.6 ppm whose intensity increased with time while that of the O₃P-BH₃³⁻ quartet centered at about 83.5 ppm decreased (Figure 3). For the same solution, the *intensity* of the O₃P- $BH_3^{3-11}B$ spectrum (having two sets of quartets with a 1-3-3-1 pattern centered at ca. -38.8 ppm, Figure 4) decreased with time. Concomitantly, a singlet appeared at about 19.5 ppm which increased in intensity. However, neither the ³¹P nor ¹¹B spectral *patterns* changed over time in H₂O. Such spectral behaviors are consistent with the proposed hydrolysis reaction of O₃P-BH₃³⁻ as depicted in Scheme 2, where the P-B bond is broken accompanied by formation of phosphonate (corresponding to a singlet at 3.6 ppm in the ¹H-decoupled ³¹P

Figure 3. ¹H-decoupled ³¹P spectra during $O_3P-BH_3^{3-}$ hydrolysis in H₂O at 50 °C. The major quartet centered at *ca.* 83.5 ppm is the $O_3P-^{11}BH_3^{3-}$ resonance, the singlet at about 3.6 ppm is the phosphonate resonance, and the three minor peaks centered at *ca.* 83.5 ppm are due to the resonance of the ¹⁰B-form of $O_3P-BH_3^{3-}$. A total of 175 scans were acquired in each spectrum in about 5 min, and a line-broadening of 20 Hz was applied (see Figure 2 for t = 0).

Figure 4. ¹¹B spectra during $O_3P-BH_3^{3-}$ hydrolysis in H_2O at 50 °C. The peaks centered at -38.8 ppm are from the $O_3P-BH_3^{3-}$ resonance, and the singlet at about 19.5 ppm is from the resonance of boric acid. A total of 136 scans were collected in each spectrum in about 5 min, and a line-broadening of 5 Hz was applied (see Figure 2 for t = 0).

spectrum, Figure 3) and boric acid (a singlet at *ca.* 19.5 ppm in the ¹¹B spectrum, Figure 4, close to the literature value of 18.8 (\pm 1.0) ppm at 25 °C^{14,16}). When the ³¹P spectrum was collected without ¹H decoupling, a doublet was observed at *ca.* 3.6 ppm with a coupling constant of 618 Hz instead of a singlet (data not shown), confirming that a P–H bond exists in the phosphonate, as expected for the O₃P–BH₃³⁻ hydrolysis product.

After most of the $d(p^{B}T)$ had hydrolyzed (as in Scheme 1), changes in $O_3P-BH_3^{3-}$ peak intensities observed by ¹Hdecoupled ³¹P and ¹¹B NMR experiments gave reasonable pseudo-first-order kinetics fits. Equal hydrolysis rate constants of $2 \times 10^{-5} \text{ s}^{-1}$ ($R^2 = 1.00$) were calculated from ³¹P and ¹¹B NMR data at 50 °C (16 and 31 points, respectively; data not shown). There is a 20-fold difference in the rates between $d(p^{B}T)$ and $O_3P-BH_3^{3-}$ hydrolysis (Schemes 1 and 2).

 $O_3P-BH_3^{3-}$ Hydrolysis and Solvent Exchange of Borane Hydrogens in D₂O. To further understand the chemical reactions of $O_3P-BH_3^{3-}$ in aqueous solution, and to elucidate

Figure 5. ¹H-decoupled ³¹P spectra during $O_3P-BH_3^{3-}$ hydrolysis in D_2O at 60 °C. The multiple quartets centered at about 81.7 ppm are from boranophosphate resonances, and the triplet centered at about 3.4 ppm is from deuterated phosphonate. Subquartets I–IV correspond to the ³¹P resonances of non-deuterated, partially deuterated, and fully deuterated boranophosphate populations $O_3P-BH_3^{3-}$, $O_3P-BH_2D^{3-}$, $O_3P-BHD_2^{3-}$, and $O_3P-BD_3^{3-}$, respectively, in Scheme 3. A total of 344 scans were collected in each spectrum in about 10 min, and a line-broadening of 10 Hz was applied (see Figure 2 for t = 0).

the hydrolysis mechanism, we determined whether the borane hydrogens exchanged with solvent. When the time course of O₃P-BH₃³⁻ incubation in D₂O at 50 or 60 °C was followed by ¹H-decoupled ³¹P NMR, the peak intensity of O₃P-BH₃³⁻ (centered at ca. 81.7 ppm; Figure 5) decreased, accompanied by an increase in peak intensity of phosphonate (at ca. 3.4 ppm; Figure 5). This behavior was similar to that in H₂O solvent (Figures 3 and 4); however, the peak patterns differed. Specifically, the O₃P-BH₃³⁻ quartets (centered at about 81.7 ppm) measured in D₂O at 60 °C (Figure 5) consisted of two or more subquartets (labeled I, II, III, and IV) each having a 1-1-1-1 pattern. The total intensity of the quartets decreased with time; simultaneously the relative intensities within each of the subquartets changed. The results in Figure 5 show that the intensity of subquartet II increases and the intensity of subquartet I decreases with time in the early phase of the reaction. Then, subquartet III starts to appear, and its intensity increases with time. At the same time, subquartet I starts to disappear and the intensity of subquartet II decreases. As the reaction proceeds, subquartet IV starts to appear while the intensity of subquartet III decreases and subquartet II disappears. Finally, only quartet IV exists, and its intensity decreases further with time (data not shown). Intensity changes of subquartets I-IV are plotted in Figure 6; the relative ³¹P NMR intensity changes of subquartets I, II, III, and IV increase through a maximum, and then decay. This behavior is characteristic of a reaction consisting of four sequential pseudo-first-order steps.

The ³¹P subquartet II is 0.14 ppm downfield from subquartet I. Downfield shifts of this magnitude were also observed for subquartet III relative to subquartet II, and for subquartet IV relative to subquartet III. The shift values are independent of reaction time and insensitive to temperature changes in the 25–60 °C range (data not shown). Since subquartets I–IV are 1-1-1-1 quartets and have chemical shifts very similar to those of O₃P–BH₃^{3–} (quartet I), subquartets II, III, and IV must correspond to species which all retain P–B bonds (as proposed in Scheme 3).

In the same ¹H-decoupled ³¹P spectra (Figure 5), a triplet with a 1-1-1 pattern (peak V) centered at about 3.4 ppm in

⁽¹⁶⁾ Onak, T. P.; Labdesman, H.; Williams, R. E.; Shapiro, I. J. Phys. Chem. 1959, 63, 1533-1535.

Figure 6. Time dependence of ³¹P NMR intensities for species I–IV during O_3P –BH₃³⁻ hydrolysis in D₂O at 60 °C obtained from experiments illustrated in Figure 5.

Scheme 3. Hydrolysis of $O_3P-BH_3^3-$ in D_2O Superimposed upon Stepwise Deuterium Substitution in D_2O^a

 a Stepwise deuteration produces boranophosphate intermediates II–IV. Hydrolysis of intermediates I–IV produced deuterated phosphonate (V). The $-BH_3$ group carries one negative charge.

D₂O is observed, instead of a singlet as previously seen in H₂O (Figure 3); the peak intensity increases with time (Figures 5 and 6). Removal of ¹H decoupling did not change the nature of the triplet (data not shown), suggesting that a D nucleus (spin I = 1) is coupled to a ³¹P. Therefore, peak V was assigned to a deuterated phosphonate which contains a P–D bond (see Scheme 3). The measured coupling constants $J({}^{31}P-{}^{-1}H)$ and $J({}^{31}P-{}^{-1}H)$ of the ¹H- and D-forms of phosphonate species were 584.5 and 89.9 Hz, respectively, giving a $J({}^{31}P-{}^{-1}H)/J({}^{31}P-{}^{-1}D)$ ratio of 6.50. Agreement with the theoretical value of $\gamma^{H}/\gamma^{D} = 6.514^{17}$ for the ¹H- and D-forms of phosphonate species confirms the assignment. Thus, the data in D₂O solvent are consistent with O₃P-BH₃³⁻ undergoing hydrolysis to produce the deuterated phosphonate species V (as proposed in Scheme 3).

We also observed evidence for deuterium substitution of the borane hydrogens in the ¹¹B spectra. Upon ¹H decoupling, the ¹¹B resonance of $O_3P-BH_3^{3-}$ in H₂O at 50 °C became a doublet (data not shown), due to coupling between bonded ¹¹B and ³¹P atoms. However, each peak of the doublet developed a complicated splitting pattern and changed with time upon incubation in D₂O (data not shown). The ¹¹B doublet is the result of coupling between the ¹¹B and ³¹P atoms due to the existence of a P–B bond. The changing peak pattern in the

Figure 7. ¹¹B spectra of O_3P -BD₃³⁻ at 25 °C. A total of 1024 scans were acquired, and a line-broadening of 2 Hz was applied.

doublet can be attributed to further coupling between ¹H/D and ¹¹B during stepwise deuterium substitution of the borane hydrogens. After extensive incubation in D₂O, when the ³¹P spectrum only contains quartet IV, the corresponding ¹¹B spectrum (Figure 7) contains a doublet and each peak of the doublet has a 1-3-5-6-5-3-1 pattern. This ¹¹B spectrum is unaffected by ¹H decoupling (data not shown). The ¹¹B pattern shown in Figure 7 is due to the presence of three equivalent deuterium atoms bonded to boron, as in the -P-BD₃ linkage (species IV in Scheme 3). The ¹¹B NMR results hence corroborate the conclusion obtained from the ¹H-decoupled ³¹P NMR studies that the borane hydrogens undergo stepwise deuterium substitution.

Discussion

Hydrolysis of Boranophosphate Mononucleotide Involves P-O-R Bond Cleavage in H₂O. ¹H, ³¹P (Figure 2), and ¹¹B NMR studies indicate that $d(p^{B}T)$ is hydrolyzed to produce thymidine dT and boranophosphate $O_{3}P-BH_{3}^{3-}$ in aqueous solution at 50 °C as shown in Scheme 1. This result is in agreement with previous HPLC experiments which showed that dT, not thymidine monophosphate d(pT), was the observed product at 260 nm.⁹ From these results, it can be concluded that the $P-BH_{3}$ bond in deoxythymidine borano-monophosphates is hydrolyzed less readily than the P-O-R bond.

It is interesting to compare these experimental results with conclusions from *ab initio* SCF calculations by Thatcher and Campbell,²⁰ who assumed that phosphate hydrolysis proceeds *via* a trigonal bipyramidal pentacoordinate intermediate in which incoming and leaving groups occupy the apical position.^{18,19} These calculations predicted that the P–O bond would be more labile to hydrolysis than the P–B bond.²⁰ This is consistent with our experimental results. It remains to be determined whether hydrolysis of the P–O bond in boranophosphate nucleotides proceeds *via* a similar intermediate.

Hydrolysis of Boranophosphate, $O_3P-BH_3^{3-}$, in H₂O. Hydrolysis of $O_3P-BH_3^{3-}$, as followed by ³¹P and ¹¹B NMR with time, indicated that $O_3P-BH_3^{3-}$ decomposes into phosphonate and boric acid in H₂O at 50 °C as shown in Scheme 2. Does $O_3P-BH_3^{3-}$ hydrolyze in a stepwise manner? Several researchers have proposed that stepwise hydrolysis of tetrahydroborate (BH₄⁻) is possible *via* the hydrated intermediates BH_{4-n}(OH)_n^{-.21-26} We attempted to find evidence for analogous $O_3P-B_{3-n}(OH)_n^{3-}$ intermediates; however, the ³¹P or ¹¹B

- (21) Davis, R. E.; Swain, C. G. J. Am. Chem Soc. 1960, 82, 5949-5950.
 - (22) Mesmer, R. E.; Jolly, W. L. Inorg. Chem. 1962, 1, 608–612.
 (23) Davis, R. E.; Bromels, E. B.; Kibby, C. L. J. Am. Chem. Soc. 1962,
- 84, 885–892.
- (24) Gardiner, J. A.; Collat, J. W. J. Am. Chem. Soc. 1965, 87; 1692–1700.
- (25) Gardiner, J. A.; Collat, J. W. Inorg. Chem 1965, 4, 1208-1212.

⁽¹⁷⁾ Stec, W. J.; Goddard, N.; van Wazer, J. R. J. Phys. Chem. 1971, 75, 3547-3549.

⁽¹⁸⁾ Thatcher, G. R. J.; Kluger, R. H. Adv. Phys. Org. Chem. 1989, 25, 99-265.

⁽¹⁹⁾ Westheimer, F. H. Acc. Chem. Res. 1968, 1, 70-78.

⁽²⁰⁾ Thatcher, G. R. J.; Campbell, S. J. Org. Chem. 1993, 58, 2272-2278.

peak patterns and *J* coupling constants of $O_3P-BH_3^{3-}$ did not change with time during $O_3P-BH_3^{3-}$ hydrolysis in H_2O (shown in Figures 3 and 4). This suggests that either the hydrated intermediates $O_3P-BH_2(OH)^{3-}$, $O_3P-BH(OH)_2^{3-}$, and $O_3P B(OH)_3^{3-}$ do not form or they are too unstable to be detected by NMR.

Natural boron consists of about 80% ¹¹B and 20% ¹⁰B. This can be detected by the presence of major and minor peaks in the ³¹P spectrum of O₃P-BH₃³⁻. The major peak patterns (Figure 3) can be explained by the proposed hydrolysis reaction of O₃P-BH₃³⁻ shown in Scheme 2. However, three additional minor ³¹P peaks of equal intensity are present throughout the hydrolysis time course, superimposed upon the major O₃P- BH_3^{3-} quartet (Figure 3). While the pattern of these peaks did not change with time, their intensities did, similar to the observed intensity decrease of the major quartet corresponding to O₃P-BH3³⁻. The three minor peaks are adequately explained as corresponding to the ¹⁰B-form of $O_3P-BH_3^{3-}$, while the major quartet is due to the ¹¹B-form of $O_3P-^{11}BH_3^{3-}$. Since ¹⁰B has a nuclear spin of 3, it is expected that (1) the ³¹P spectrum of the ¹⁰B-form of O₃P-BH₃³⁻ should be a septet with equal intensities (a 1-1-1-1-1-1-1 pattern), (2) the individual ³¹P peak intensity of the ¹⁰B-form in O₃P-BH₃³⁻ should be about 0.14 times that of the ³¹P peak in the ¹¹B-form in the same solution (see Materials and Methods), and (3) the coupling constant ratio $J({}^{31}P-{}^{11}B)/J({}^{31}P-{}^{10}B)$ should be about 3. 13b,27 Experimentally, only three minor peaks with equal intensities are resolved in Figure 3. Upon closer inspection, one can see that the two middle peaks in the major quartet have broader base regions than those of the two outside peaks. This suggests that the four hidden resonances of the septet from the ¹⁰B-form are probably buried under the two middle peaks of the major quartet of the ¹¹B-species. Under this assumption, parameters for the resolved minor peaks in Figure 3 can be estimated: (1) The ³¹P chemical shifts of the ¹⁰B- and ¹¹B-forms of O₃P- BH_3^{3-} are both *ca.* 83.5 ppm. (2) The *J* coupling constants $J({}^{31}P-B)$ are 149.8 and 50.0 Hz for the ${}^{11}B-$ and ${}^{10}B-$ forms, respectively, giving an experimental $J({}^{31}P-{}^{11}B)/J({}^{31}P-{}^{10}B)$ ratio of 3.0. (3) The estimated individual ³¹P peak intensity ratio for the ¹⁰B-form relative to the ¹¹B-form is 0.16. Thus, the experimental J coupling ratio $(J({}^{31}P-{}^{11}B)/J({}^{31}P-{}^{10}B))$ and ${}^{31}P$ intensity ratio (10B-form/11B-form) are in good agreement with theoretical values of 2.99 and 0.14, respectively.^{13b,27} This confirms our assumptions that the three minor ³¹P peaks in Figure 3 arise from the 10 B-form of $O_3P-BH_3{}^{3-}$ and that the other four peaks of the ¹⁰B-form septet overlap with the two middle peaks of the major quartet of the ¹¹B-form. By following the decrease in ³¹P intensities of the minor peaks illustrated in Figure 3, we calculated a pseudo-first-order rate constant of 2 \times 10⁻⁵ s⁻¹ at 50 °C (with 21 data points acquired over 1.8 h; data not shown), which is the same as that observed for the ¹¹B-form in the same experiments.

The three minor ³¹P peaks from the ¹⁰B-form of $O_3P-BH_3^{3-}$ seen in H_2O (Figure 3) were not observed in D_2O (Figure 4). This is presumably because the four subquartets of stepwise D-substituted ¹¹B-forms of $O_3P-BH_3^{3-}$ broaden the ³¹P resonances and thereby obscure observation of the minor ³¹P septet from the ¹⁰B-form of $O_3P-BH_3^{3-}$.

Hydrolysis and Deuterium Exchange of $O_3P-BH_3^{3-}$ in D_2O . Incubation of $O_3P-BH_3^{3-}$ in D_2O gave ³¹P (Figure 5) and ¹¹B spectral patterns different from those found when the same reaction was followed in H_2O (Figures 3 and 4). The

O₃P-BH₃³⁻³¹P spectrum in D₂O consists of two or more subquartets (Figure 5), while only one quartet was observed in H_2O (Figure 3) throughout the reaction period. We propose that deuterium substitution of the borane hydrogens in O₃P-BH₃³⁻ in D₂O occurs in a three-step manner with three different rate constants. The observed multiple subquartets noted in ¹Hdecoupled ³¹P spectra at different stages in D₂O can be explained as "isotope shifts" (see below) due to individual stepwise D substitution of ¹H atoms in the -P-BH₃ linkage. Boranophosphate hydrolysis and deuterium substitution reactions in D₂O are summarized in Scheme 3, in which I, II, III, and IV correspond to stepwise deuterated boranophosphate intermediates O₃P-BH₃³⁻, O₃P-BH₂D³⁻, O₃P-BHD₂³⁻, and O₃P- BD_3^{3-} , respectively. From these data we propose that hydrolysis of O₃P-BH₃³⁻ occurs superimposed upon deuterium exchange. Borane hydrogens exchange with deuteriums in D₂O to produce deuterated borane; at the same time, hydrolytic P-B bond cleavage occurs, producing phosphonate and boric acid.

To further confirm deuterium substitution of the borane hydrogens in $O_3P-BH_3^{3-}$ in D_2O , a reverse exchange experiment was conducted by utilizing the reaction mixture which had been hydrolyzed in D_2O to give fully deuterated $O_3P-BD_3^{3-}$ (determined by ¹¹B and ³¹P NMR), followed by lyophilizing and transferring the molecule into H_2O . Phosphorus-31 and ¹¹B spectra both showed the expected peaks (data not shown) due to stepwise hydrogen substitution intermediates as depicted in Scheme 3.

We think it likely that the ${}^{31}P$ multiplets at *ca* 81.7 ppm in Figure 5 arise as a result of stepwise hydrolysis or deuterium exchange. If stepwise hydrolysis were to occur instead of the three-step deuterium substitution reaction in D₂O as proposed in Scheme 3, formation of partially or fully hydrated intermediates (e.g., $O_3P-B(OD)_3^{3-}$) would result. The deuterium in the -B-OD linkage is expected to be in fast exchange with D_2O , so coupling of ¹¹B to D may not be observable in the ¹¹B NMR spectrum with the 1-3-5-6-5-3-1 pattern shown in Figure 7. In this case, the 1-3-5-6-5-3-1 pattern obtained in the ¹¹B spectrum provides further evidence that the species corresponding to subquartets I, II, III, and IV in ¹H-decoupled ³¹P spectra (Figure 5) are due to intermediates in stepwise deuterium substitution of the borane hydrogens in D₂O, and are not produced by intermediates in stepwise hydrolysis of O₃P- BH_3^{3-} . We concluded above that stepwise hydrolysis of borane hydrogens in $O_3P-BD_3^{3-}$ was not observable in H_2O . The D_2O results are consistent with this conclusion.

Isotope Shifts in the $O_3P-BH_3^{3-}$ NMR Spectra. Changes in chemical shifts and *J* coupling constants can occur upon isotopic substitution. Factors that influence the magnitude of the isotope shift include the number of intervening bonds between sites of isotopic substitution and the nucleus of interest, the fractional change in mass upon isotopic substitution, and the number of atoms in the molecule that are substituted by isotopes. Larger shifts occur when the substitution is linked directly to the nucleus, when a larger mass change occurs, and with a larger number of substitutions. Although the isotope shift leads to complications in interpreting NMR results, it can provide useful information regarding molecular structure and reaction mechanism, as shown here.

³¹P isotope shifts provide additional, quantitative evidence for the premise of Scheme 3 that the subquartet patterns in ¹Hdecoupled ³¹P spectra of $O_3P-BH_3^{3-}$ in D_2O are the result of a three-step deuterium substitution of the borane hydrogens. The ³¹P isotope shift is 0.14 ppm for each deuterium substitution of the borane hydrogens, and the shifts are additive; subquartets II ($O_3P-BH_2D^{3-}$), III ($O_3P-BHD_2^{3-}$), and IV ($O_3P-BD_2^{3-}$)

⁽²⁶⁾ Levine, L. A.; Kreevoy, M. M. J. Am. Chem. Soc. 1972, 94, 3346-3394.

⁽²⁷⁾ Kidd, R. G. NMR of Newly Accessible Nuclei; Academic Press, Inc.,-New York, 1983; Vol. 2.

shift downfield relative to subquartet I ($O_3P-BH_3^{3-}$) by 0.14, 0.28, and 0.42 ppm, respectively. Even though the phosphorus atom is separated by two bonds from the substituted position in the $-P-B(H/D)_3$ linkage, the observed ³¹P isotope shift is quite large, possibly due to the large relative mass difference between ¹H and ²H (a 100% change).

One would expect to see ¹¹B isotope shifts due to ¹H/D substitution. These were in fact observed, but the ¹¹B isotope shift values from each deuterium substitution were obscured by broadening and severe overlap of the ¹¹B resonances from the stepwise deuterated intermediates (data not shown). Yet these results showed clearly that deuterium substitution shifts the ¹¹B resonance upfield, as expected on the basis of zeropoint vibrational energy arguments.²⁸ In contrast, the ³¹P resonances shifted downfield upon deuterium substitution. It is possible that factors other than mass changes dominate in determining the ³¹P isotope shift. One such possibility is that pH changes occur as a result of $O_3P-BH_3^{3-}$ hydrolysis to form phosphonate and boric acids under unbuffered conditions (see Materials and Methods).

A ³¹P isotope shift due to ¹⁰B/¹¹B substitution is expected theoretically; however, the observed ³¹P chemical shifts of the ¹⁰B-forms of O_3P -BH₃³⁻ have almost the same values as the ¹¹B-forms in H₂O at 50 °C (in Figure 3). Thus, the secondary ³¹P isotope shift due to ¹¹B/¹¹B substitution is very small, even though the boron is only one bond removed from the phosphorus atom. This is not surprising since the mass change due to ¹⁰B/¹¹B substitution is only *ca*. 10%.

Influence of Electronic Environment on Spectral Line-Broadening. The ¹H, ³¹P, and ¹¹B peaks of O₃P-BH₃³⁻ (Figures 2 and 4; ¹H spectrum not shown) are considerably narrower than those of d(p^BT) mononucleotide (Figures 1 and 2). The broadened resonance of $d(p^BT)$ might be ascribed to a less symmetric electronic environment around the ¹¹B atom. The line width of a quadrupolar nucleus is largely determined by its electric field gradient, which is related to the local electronic symmetry about the nucleus.^{13a,29} Tetrahedral, octahedral, cubic, or spherical binding sites, in principle, are electronically symmetric and thus have zero field gradients; under these circumstances, sharp lines are observed for symmetric simple ions in aqueous solutions (e.g., BH₄⁻ and BF₄⁻). Lower local asymmetry can cause profound line-broadening. The ¹¹B nucleus in the d(p^BT) nucleotide is in a less symmetric geometric environment than in the simpler O₃P-BH₃³⁻, and thus broader peaks would be expected for $d(p^BT)$, as was observed here.

Rates of O₃P-BH₃³⁻ Hydrolysis and Deuterium Substitution. The ³¹P NMR experiments provided evidence that stepwise deuterium substitutions involving four intermediates occur and that each intermediate undergoes hydrolysis concurrently in D₂O as in Scheme 3. Intermediate concentrations of O₃P-BH₂D³⁻, O₃P-BHD₂³⁻, and O₃P-BD₃³⁻ first increased and then decreased with time during ¹H-decoupled ³¹P NMR experiments (Figure 6). From these data, rate constants for hydrolysis and deuterium substitution steps can be estimated from the changing concentrations of reactants in situations in which the previous reaction is finished and the concentration of the species of interest decreases monotonically with observation time. For example, after the d(p^BT) phosphate ester is completely hydrolyzed to form O₃P-BH₃³⁻ (species I, Scheme 3) in D_2O , the latter species undergoes hydrolysis to produce phosphonate (species V) and boric acids; deuterium substitution also occurs to produce species II (O₃P-BH₂D³⁻). The con-

Table 1. Hydrolysis and Deuterium Substitution Rate Constants for $d(p^BT)^a$ and $O_3P-BH_3{}^{3-}$

	$k_1 (s^{-1})$ in H ₂ O	$k_1 (s^{-1})$ in D ₂ O	temp (°C)
Phosphate Ester Hydrolysis of $d(p^BT)$			
$d(p^{B}T) \rightarrow dT + O_{3}P - BH_{3}^{3-}$	4×10^{-4}	<i>a</i> ,	50
Hydrolysis of O ₃ P–BH ₃ ^{3–}			
$O_3P-BH_3^{3-} \rightarrow O_3P-H^{2-}+B(OH)_3$	2×10^{-5}		50
	7×10^{-5}		60
$O_3P - BD_3^{3-} \rightarrow O_3P - D^{2-} + B(OD)_3$		8×10^{-6}	60
Deuterium Substitution of O ₃ P-BH ₃ ³⁻			
$-P-BH_3^- \rightarrow -P-BH_2D^-$	5	$1 \times 10^{-4 b}$	50
		$2 \times 10^{-4 b}$	60
$-P-BH_2D^- \rightarrow -P-BHD_2^-$		$4 \times 10^{-5 b}$	50
		$9 \times 10^{-5 b}$	60
$-P-BHD_2^- \rightarrow -P-BD_3^-$		$2 \times 10^{-5 b}$	50
		$4 \times 10^{-5 b}$	60

 $^a\,d(p^BT)$ is as shown in Scheme 1. b Upper limit value (see the Discussion).

centration of species I decreases monotonically with time due to the two concurrent processes at this stage. Assuming that hydrolysis occurs more slowly than the rate of deuterium substitution, and that the reverse exchange reaction is negligible at early stages in the reaction, the rate of transformation from species I into species II can be calculated from pseudo-firstorder plots of the changes in species I intensity with time. Rate constants were 1×10^{-4} and 2×10^{-4} s⁻¹ at 50 and 60 °C, respectively (data not shown). Since the hydrolysis and deuterium substitution reactions occur concurrently, the calculated substitution rate constants are only upper limit values.

We assume that hydrolysis is slower than deuterium substitution of boranophosphates. The fact that the hydrolysis rate for the same species (e.g., I in Scheme 3) is 10-fold smaller than the calculated upper limit deuterium substitution rate constant (see Table 1) validates this assumption. When the boranophosphate is completely deuterated, the decrease in species IV intensity can be attributed exclusively to hydrolysis, and the hydrolysis rate constant is estimated to be $8 \times 10^{-6} \text{ s}^{-1}$ at 60 °C. Estimated rate constants for hydrolysis and deuterium substitution are given in Table 1. Hydrolysis rate constants for intermediates O₃P-BH₃³⁻, O₃P-BDH₂³⁻, and O₃P-BD₂H³⁻ in D₂O could not be assessed at this time. Although ³¹P spectral data offered only upper limit rates for stepwise deuterium substitution of O₃P-BH₃³⁻, Figures 5 and 6 clearly show that the borane hydrogens in boranophosphate can exchange with D₂O in a stepwise manner.

The rates of boranophosphate hydrolysis and deuteration are temperature-dependent. For $O_3P-BH_3^{3-}$ hydrolysis in H₂O, k_1 values are 2 × 10⁻⁵ and 7 × 10⁻⁵ s⁻¹ at 50 and 60 °C, respectively (Table 1).

The rates of boranophosphate hydrolysis and deuteration are solvent- and isotope-dependent. Each stage of deuterium substitution of borane hydrogens in O₃P-BH₃³⁻ in D₂O takes place at a progressively slower rate. Thus, the presence of more deuterium substituents in the -BH₃ group slows further substitution. For example, the upper limit deuterium substitution rate constant k_1 for the transformation of $-P-BH_3$ into -P-BH₂D is ca. 2 \times 10⁻⁴ s⁻¹, the rate of -P-BH₂D deuteration is ca. 9×10^{-5} s⁻¹, and the rate of $-P-BHD_2$ deuteration is ca. 4×10^{-5} s⁻¹ at 60 °C (Table 1). In addition, hydrolysis rates for $O_3P{-}BH_3{}^{3-}$ in H_2O and $O_3P{-}BD_3{}^{3-}$ in D_2O are 7 \times 10^{-5} and 8 \times 10⁻⁶ s⁻¹ at 60 °C, respectively. Thus, O₃P-BH₃³⁻ hydrolyzes *ca*. 10-fold faster in H₂O than $O_3P-BD_3^{3-}$ in D₂O. These observed kinetic isotope effects are probably the result of a combination of isotope solvent ($H_2O \ vs \ D_2O$) and composition $(O_3P-BH_3^{3-} vs O_3P-BD_3^{3-})$ effects. Since

 ⁽²⁸⁾ Hansen, P. E. Prog. NMR Spectrosc. 1988, 20, 207–255.
 (29) Rankothge, H. M.; Hook, J.; van Gorkom, L.; Moran, G. Magn. Reson. Chem. 1994, 32, 446–451.

Figure 8. ¹H-decoupled ³¹P spectrum of $d(p^BT)$ in D₂O buffer at 25 °C. The sample was incubated at *ca.* 25 °C for at least 30 h before collecting the spectrum. The downfield multiple quartets centered at *ca.* 80.9 ppm correspond to $d(p^BT)$ resonances, and the upfield multiple quartets centered at *ca.* 78.2 ppm are from boranophosphate resonances (the right-most peaks of the downfield quartets overlap with the leftmost peaks of the upfield quartets). In the downfield multiple quartets, subquartet B is due to the resonance of partially deuterated borane (P– BH₂D) in $d(p^BT)$, and subquartet A is the resonance of the non-deuterated $d(p^BT)$. In the upfield multiple quartets, subquartets I–IV are the same as assigned in Figure 5. A total of 1024 scans were collected, and a line-broadening of 5 Hz was applied.

we were not able to measure the hydrolysis rates of $O_3P-BH_3^{3-}$ in D₂O or fully deuterated boranophosphate, $O_3P-BD_3^{3-}$, in H₂O without interfering with the solvent exchange process, these isotope effect contributions could not be analyzed.

Tentative Evidence for Solvent Exchange of Borane Hydrogens in the $d(p^BT)$ Mononucleotide. Whereas we observed stepwise deuterium substitution of borane hydrogens in O₃P-BH₃³⁻ in D₂O, we did not observe deuterium-induced isotope shifts in ¹H-decoupled ³¹P spectra of d(p^BT) during hydrolysis to form dT and O₃P-BH₃³⁻ in D₂O at 50 °C (Figure 2). However, we observed deuterium substitution of the borane hydrogens in one d(p^BT) sample in D₂O buffer which contained 100 mM NaCl, 1 mM EDTA, and 10 mM phosphate, pH 7.4, upon incubation at or below 25 °C for over 30 h. The ¹Hdecoupled ³¹P spectrum (Figure 8) showed that there are at least two resolved subquartets (labeled A and B) from the original d(p^BT), whose chemical shifts differed by 0.14 ppm, the same value as observed for each of the deuterium-substituted boranophosphate forms I-IV (Figure 5). We believe that subquartet A in Figure 8 corresponds to non-deuterated $d(p^{B}T)$ and that subquartet B corresponds to a population of partially deuterated $d(p^{B}T)$ (containing the $-P-BH_{2}D$ linkage). Thus, under these conditions d(p^BT) is observed to undergo stepwise solvent exchange, but deuterium substitution is slow relative to hydrolysis of the -P-O-sugar linkage and is thus overtaken by it.

Exchange between borane hydrogens in the $-P-BH_3$ linkage and solvent protons is significant because it demonstrates that the hydrogens in the borane group $(-BH_3)$ in $O_3P-BH_3^{3-}$ and $d(p^BT)$ mononucleotide are in dynamic equilibrium with the solvent. This ready ability of borane hydrogens to exchange with D_2O distinguishes the $-BH_3$ functionality in $O_3P-BH_3^{3-}$ and $d(p^BT)$ mononucleotide from the $-CH_3$ in methylphosphonate-modified nucleotides.

In contrast to the *mono*nucleotide, the dithymidine boranomonophosphate *di*nucleotide $d(Tp^BT)$ is very stable to hydrolysis; hydrolysis rates for the latter (diester) are about 5 orders of magnitude slower than for $d(p^BT)$ (monoester), i.e., on the order of 10^{-9} s⁻¹ at 50 °C in 0.2 M phosphate (pH 7) buffer.^{8,9a} If we assume that the deuterium substitution rate in D₂O obtained for O₃P-BH₃³⁻ (*ca.* $10^{-4}-10^{-5}$ s⁻¹ at 60 °C) is applicable to the dinucleotide, it is possible that deuterium replacement of the borane hydrogens in the $d(Tp^BT)$ dinucleotide occurs more easily than its hydrolysis in D₂O. However, incubating a $d(Tp^BT)$ sample in 100 mM NaCl, 10 mM phosphate (pH 7.4), **Scheme 4.** One Possible Mechanism for Hydrolysis and Solvent Exchange Reactions of $O_3P-BH_3^{3-}$ in D_2O

and 1 mM EDTA at 30 °C for at least 30 h showed no experimental evidence for isotope shifts in the ¹H, ³¹P, or ¹¹B spectra (data not shown). There are two reasonable explanations for why isotope shifts have been detected in the NMR spectra of the mononucleotide, but not those of the dinucleotide. First, the NMR studies utilized 40–85-fold higher concentrations of mononucleotide than the dinucleotide (85 mM *vs* 1–2 mM), so a small fraction of dinucleotide showing the isotope shift may be difficult to observe. Second, the ¹¹B atom in the dinucleotide gives broadened ¹H, ³¹P, and ¹¹B peaks, reducing the "effective" signal/noise ratio. Thus, observation of deuterium substitution by an isotope shift on the ³¹P or ¹¹B spectra of d(Tp^BT) dinucleotides may be obscured.

Possible Mechanisms for the Hydrolysis and Deuteration of $O_3P-BH_3^{3-}$. The overall hydrolysis and deuteration reactions of boranophosphate are shown in Scheme 3, and one possible mechanism involving a five-coordinate activated complex is shown in Scheme 4. Pentavalent intermediates, e.g., BH₅ and BH₄CN, were previously proposed for the hydrolyses of hydroborate (BH₄⁻) and cyanoborate (BH₃CN⁻), respectively.^{22,30,31} If both hydrolysis and deuterium exchange reactions share the same intermediate, an analogous intermediate containing a $-P-BH_4$ linkage may operate here for the hydrolysis and deuteration of $O_3P-BH_3^{3-}$ (Scheme 4).

Addition of a D⁺ from the D₂O to O₃P-BH₃³⁻ would form the $-P-BH_3D$ linkage. This intermediate could lead down either of two paths: proton-deuterium exchange or hydrolysis. Thus, the intermediate may transfer either an existing H or the incoming D to phosphorus and P-B bond breakage can occur to produce a -P-H or -P-D bond in the phosphonate, resulting in hydrolysis. Alternatively, loss of H⁺ occurs, resulting in deuterium substitution. A third possibility is loss of D⁺, resulting in no observed solvent exchange.

In this mechanism, we expect to see both -P-H and -P-D bond formation in the phosphonates if P-H and P-D bonds are formed at similar rates under a given condition. Under these circumstances, the ¹H-decoupled ³¹P spectrum should then contain a singlet and a triplet, and the ³¹P spectrum should contain a doublet and a triplet, corresponding to the ¹H- and D-forms of phosphonate, respectively. Qualitatively, at the beginning of boranophosphate hydrolysis, more H-form phosphonate should be present, while at later stages most of the boranophosphate should be in the O₃P-BD₃³⁻ form and only the deuterated phosphonate should be produced as a hydrolysis product. Results from our O₃P-BH₃³⁻ hydrolysis experiments in D₂O demonstrate the presence of a triplet in ³¹P spectra both with (Figure 5) and without ¹H decoupling (data not shown), indicating that D-form phosphonate forms throughout the course of the reactions.

⁽³⁰⁾ Kreevoy, M. M.; Hutchins, J. E. C. J. Am. Chem. Soc. 1969, 91, 4329-4330.

⁽³¹⁾ Kreevoy, M. M.; Hutchins, J. E. C. J. Am. Chem. Soc. 1972, 94, 6371-6376.

Scheme 5. Tautomeric Equilibrium of Phosphonic Acid and Hypothetical Deuterium Exchange Mechanism

One possible reason for not observing the ¹H-form of phosphonate by ³¹P NMR is that, in D₂O, the ¹H-form of phosphonate is readily converted into the D-form. It is known that phosphonic acid is in tautomeric equilibrium with its trivalent phosphorous acid isomers^{32,33} (Scheme 5), which can then be converted into deuterated phosphonate (product V in Scheme 3). If the conversion reaction from the ¹H-form to the D-form of phosphonate in Scheme 5 were to occur faster (e.g., > 500-fold) than the rate of P–B bond hydrolysis, the D-form of phosphonate would be the major observed product in this mechanism. Another possible reason for not observing the ¹Hform phosphonate by ³¹P NMR is that existing H and incoming D in the intermediate (Scheme 4) are not in equivalent positions so that the incoming deuterium is transferred more efficiently to phosphorus during the hydrolysis process than the existing H. In this inequivalent transfer rate case, the D-form of phosphonate would be the dominant product of O₃P-BH₃³⁻ hydrolysis. The present data cannot discriminate between the two possibilities or other possible mechanisms for hydrolysis and solvent exchange of boranophosphate.

Conclusion

Reactions of thymidine 5'-boranomonophosphate, d(pBT), in aqueous solution were studied with the hope that the results would offer important insights regarding the behavior of these compounds in potential pharmaceutical applications. Unlike many borane-containing compounds, phosphate borane is quite stable in aqueous solution due to its unique structure. Thus, ¹H, ³¹P, and ¹¹B NMR could be used to follow hydrolysis of the P–B bond and deuterium substitution of the borane hydrogens by providing a set of interdependent and internally consistent information. Of special utility were ${}^{31}P$ and ${}^{11}B$ isotope shifts due to ${}^{1}H/D$ substitution.

In aqueous solution, d(p^BT) slowly decomposes, first into thymidine dT and boranophosphate $O_3P-BH_3^{3-}$ ($k_1 = 4 \times 10^{-4}$ s^{-1} at 50 °C in H₂O), followed by an even slower hydrolysis of $O_3P-BH_3^{3-}$ to produce phosphonate and boric acid ($k_1 = 2 \times$ 10^{-5} s⁻¹ at 50 °C in H₂O). Therefore, the P–B bond in the d(p^BT) mononucleotide is less susceptible to hydrolysis in aqueous solution than the P-O-sugar linkage. In addition to hydrolysis, the hydrogens in the -P-BH3 linkage of both d(p^BT) and O₃P-BH₃³⁻ exchange with solvent. The exchange process was inferred from the presence of ³¹P and ¹¹B isotope shifts and changes in coupling patterns to involve three-step deuterium substitution of borane hydrogens in D₂O. Each deuterium substitution causes a 0.14 ppm downfield shift of the ${}^{31}P$ resonance of the $-P-BH_3{}^{3-}$ linkage. Deuterium substitution of borane hydrogens in O₃P-BH₃³⁻ occurs in a three-step manner to form intermediates O₃P-BDH₂³⁻, O₃P-BD₂H³⁻, and O₃P-BD₃³⁻ and is superimposed upon hydrolysis of partially and fully deuterated boranophosphate intermediates, producing deuterated phosphonate and boric acid in D₂O. At 50 °C deuterium substitution of O₃P-BH₃³⁻ occurs an order of magnitude faster than its hydrolysis.

Acknowledgment. NMR spectra were recorded at the Duke University NMR Center established with fundings from the NIH, NSF, NC Biotechnology Center, and Duke University. We thank Dr. Jeno Tomasz for synthesis of the thymidine 5'boranomonophosphate and Dr. Faqing Huang for providing HPLC hydrolysis data and helpful discussions. We thank Drs. Tony Ribeiro, Louis D. Quin, and Edward M. Arnett for critical reading of the paper and Drs. Edward Budowsky and Mark Burk for suggestions in preparing the paper. C.H. was supported by NIH Grant GM 47431 and the North Carolina Agricultural Research Service. This work was supported by an R. J. Reynolds-Leon Golberg Memorial Fellowship (Duke University Toxicology Program) to H.L. and by Grant NP-741 from the American Cancer Society and Grant 5U01-CA60139 from the NIH to B.R.S.

JA9540280

⁽³²⁾ Crutchfield, M. M.; Dungan, C. H; van Wazer, J. R. *Top. Phosphorus Chem.* **1967**, *5*, 1–74.

⁽³³⁾ Stawinski, J. Handbook of Organophosphorus Chemistry; Marcel Dekker, Inc.: New York, 1992; pp 377-434.